Problem Set 5
Statistical Mechanics summer 2024

Prof. Dr. R. Hentschke
TA: Lena Tarrach (F12.19)
Bergische Uni Wuppertal

Problem 12: Inversion temperature from the universal van der Waals equation
In class we have discussed the universal van der Waals equation

$$
p=\frac{8 t}{3 v-1}-\frac{3}{v^{2}}
$$

(a) Obtain (numerically) the line $\mu_{J T}=0$ in the p-t-plane (for $p>0$ and $t>0)$. Here $\mu_{J T}$ is the Joule-Thomson coefficient.
(6 points)
(b) Look up the critical parameters for Argon, i.e critical temperature T_{c}, critical pressure P_{c} and critical volume V_{c}. Use these values to obtain the 'van der Waals inversion temperature' corresponding to the inversion temperature in problem 8.
(3 points)

Problem 13: Phase separation in a binary mixture

In lecture 8 we had discussed the enthalpy of mixing, which for an ideal binary system consisting of components A and B is given by

$$
\Delta_{M} G=n R T\left(x_{A} \ln x_{A}+x_{B} \ln x_{B}\right)
$$

Here $x_{A}+x_{B}=1$. To this we add a simple interaction term, i.e.

$$
\Delta G=n R T\left(x_{A} \ln x_{A}+x_{B} \ln x_{B}+\chi x_{A} x_{B}\right)
$$

Based on ΔG obtain the phase diagram of the AB-mixture in the $x_{A^{-}} \chi^{-}$ plane, i.e. calculate the (binodal) line in the $x_{A^{-}-\chi \text {-plane separating the area }}$ in which the mixture is homogeneous from the area in which the mixture 'breaks up' into A-rich and A-poor regions (analogous to the liquid-like and gas-like regions found in a system where the vdW pressure must be replaced by a constant). See also section 4.3 in Thermodynamics. Also calculate the (spinodal) line marking the stability limit $\partial^{2} \Delta G /\left.\partial x_{A}^{2}\right|_{T, P}=0$. Include this line in your phase diagram. Can you say what this equation has to do with
stability? Does it matter that you use $\Delta_{M} G$ instead of the full G (please explain)?
(6 points)
Problem 14: Model magnet
A simple model for the thermal behavior of a magnet possess the energy eigenvalues $E_{\nu}=-J m_{\nu}\langle m\rangle$, where $J>0$ is a constant. In addition $\nu=1,2$ and $m_{1}=1, m_{2}=-1$. Derive an implcit formula for the average magnetization $\langle m\rangle$ as function of the dimensionless temperature $T / T_{c}\left(T_{c}=J / k_{B}\right)$. Expect more than one solution for $T<T_{c}$. Which of these is/are the thermodynamic stable solution/s? Sketch the magnetization for $0<T<\infty$.
(9 points)

